Development of field-deployable and point-of-need diagnostics for SARS-CoV-2 using CRISPR-based technology
Current diagnostic testing for the SARS-CoV-2 outbreak requires the use of specialized equipment for molecular-based pathogen detection. The equipment must be housed in a facility with electricity and freezers for storage of temperature sensitive materials and equipment operation. Lateral flow based assays are an alternative diagnostic tool that is inexpensive, temperature stable, user-friendly and has a faster turn-around-time (TAT). However, this platform takes longer to develop, with reduced specificity, sensitivity, and accuracy compared to molecular-based assays. An ideal diagnostic tool combines the adaptability and reliability of molecular assays with the TAT, cost-effectiveness, and stability of lateral flow. Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) based diagnostics can provide these capabilities and revolutionize the field of point-of-need molecular-based diagnostics. Our goal is to develop CRISPR-based diagnostics to detect SARS-CoV-2 at the point-of-need, such as at the bedside, passenger screening, or returning travellers who may have been exposed. We recently demonstrated that CRISPR-based diagnostics is reliable, sensitive and can be used to detect Ebola virus and Crimean-Congo hemorrhagic fever virus. SARS-CoV-2 is highly contagious and caused more than 69,000 infections and contributed to over 1600 deaths. Therefore, it is of utmost importance to quickly diagnose SARS-CoV-2 infection to administer appropriate patient care and isolation. CRISPR-based diagnostics is a next-generation diagnostic tool that can provide results in a timely manner and fill this gap. Implementation of CRISPR-based diagnostics will complement our armamentarium against high-consequence pathogens and will address the need for faster, cheaper, and more robust diagnostics for emerging infectious diseases of public health concern.